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ABSTRACT

The usage of a topological map as memory structure for the task of indoor vi-
sual navigation has been restudied recently thanks to the advancement of deep
learning. However, previous approaches formulated the problem more as a path
memorization problem from sequence of observations. This resulted in limited
representation of the rich indoor environment and lack of connectivity while be-
ing prone to problems such as scalability and aliasing. We introduce a new form
of topological memory architecture where each vertex is a panoramic view of the
surroundings and each edge contains relative pose changes between two close-by
vertices. We show that panoramic views enables better connectivity while allevi-
ating aliasing. At the same time, edge metrics strengthens the capability of local
control and enriches the memorized representations. The combined navigation
agent outperforms previous solutions in many aspects.

1 INTRODUCTION

Recently, there has been a surge of work in using learning based methods for the task of visual
navigation thanks to the advancement of deep learning. Unlike the traditional methods such as
SLAM Mur-Artal et al. (2015) which are sensitive to sensor calibration and image qualities, learning
based methods can leverage the rich semantic information from RGB inputs and construct maps
beyond pure geometric reasoning. Recent work has shown that embodied navigation agents with
dedicated memory structure for storing learned internal map representation of the environments
outperforms agents that are purely reactive or only using short term memories such as LSTM. This
phenomenon is more observed in larger scale environments and with more complicated tasks beyond
just obstacle avoidance.

Most of the approaches try to learn a metric map representation, which has the advantage of precise
local metrics of nearby surrounding. However, such solutions often assumes ground truth coordi-
nate or ego-motion information with prefect actuation which becomes impractical in the real-world.
Strong psychological evidence Thrun (1998) suggest that human and animals have a topological
graph representation of the environment and uses landmarks as reference to accurately executes
planned paths.

Savinov et al. (2018) introduced semi-parametric topological memory which memorizes sequence
of observations as a topological graph and learns to navigate from observations to observations.
While this work has shown success in robust path following in well explored environments, there
are still many significant limitation of this framework: i) The input view angle is narrow resulting
in short-cuts between paths to be detectable only when they are in the same direction ii) It suffers
from aliasing observations when localizing iii) it scales linearly with the size of experience which
become problematic in larger environments. Moreover, metric information are completely ignored
when constructing the memory graph which we show can be quite useful in several ways.

Motivated from the representation used by human when showing indoor environments, in this work,
we propose a modified formulation of learning topological navigation that resolves many of the
limitation previous method faces while increase scalability and enables richer representation. One
the key modification we propose is to replace the narrow view angle image at each vertex with
a panoramic view observation. The main advantage we believe this change would bring is the
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improved connectivity of the learned graph. Previously used narrow angle view observation as
a vertex can only become a point in a path that travels in the same direction as the observation
faces. This significantly limited the capacity of the topological memory to memorization of paths
that was traveled during the map construction. By replacing with panoramic views, each vertex can
effectively connect paths in all directions resulting in improved connectivity, higher vertex utilization
and optimized path planning.

Another main change we propose is to factoring metric information into the topological represen-
tation. We believe even just noise ego-motion information from adjacent observations in the tra-
jectories can greatly improve the performance of local controller. Without any metric information,
previous approach relies on close-by observations to learn the transition dynamics and pose change
from feature shifts in order to select actions. However, such noisy estimation can the very easily
collected from sensors such as inertia measurement unit(IMU) which is very common on modern
robot platforms. With the rough estimation of pose change required to reach the next point on the
path, local controller can reach locations farther away from current observation with reliability. This
advantage allows to learned memory to be further sparsified thus increase scalability.

Less visual aliasing was observed thanks to more information contained in panoramic views and
spasified vertices resulting less similar looking observations. We evaluate our approach in the Gib-
son simulation environment which contains realistic 3D indoor environments of houses. We show
that our approach outperforms the baselines in may aspects and the learned topological memory
solves many previous limitations.

2 RELATED WORK

There has been a concentration of interesting recently on deploying learning based method for indoor
visual navigation. Some are purely reactive Dosovitskiy & Koltun (2016); Zhu et al. (2017) while
some other methods deploy generic memory structures Mnih et al. (2015); Mirowski et al. (2016);
Pathak et al. (2017). These methods lacks memory structures with great capacity thus limiting
their ability for planning which is important for navigation in large and complex environments.
Later research leveraged dedicated memory structure to learn a metric internal representation of the
environment. Bhatti et al. (2016) apply DL algorithm onto a map generated by traditional SLAM;
Gupta et al. (2017a) learns a internal ego-centric spatial reasoning through end-to-end learning while
Parisotto & Salakhutdinov (2017) learns a global map; Fang et al. (2019) uses attention transformer.
Most of the metric representation work assumed some level of ground truth coordinate information
which is not practical.

Another line of work Savinov et al. (2018) focused on building a topological memory that does not
rely on accurate metric readings. Such methods build a graph to represent the environment with
vertices being locations and learns to navigate from vertex to vertex. Kumar et al. (2018) studied
path following and Gupta et al. (2017b)uses sparse observation and pose information for navigation.
Chen et al. (2019) formulated the transition between vertices as a behavior problem. Meng et al.
(2019) studied the scalabilty problem by learning the capability of local controller. There has also
been an interest in using panoramic views for navigation Hirose et al. (2019).

3 TASK SETUP

The problem we study here is to learn an internal map representation through exploration of the envi-
ronment and later reuse the learned memory for path planning and execution. During the exploration
phase, the agent receives discrete time dense observations from expert guided traverse trajectory of
the environment. This sequence of observation {o1, ..., oN} is only presented once and the agent
must learn its internal map solely from it. In addition to RGB input at each time step, a noisy sensor
reading of the relative pose change from last to current observation is given to the agent. The ground
truth pose change can be formulated as ∆p = (x, y, θ) where x, y are the coordinate translation and
θ is the rotation. The agent is presented with ∆p̂ = (x+ εx, y+ εy, θ+ εθ) where εx, εy, εθ are ran-
dom Gaussian noises with 0 means, εx, εy has a variance of 0.03m and εθ has a variance of 3 degree.
During task time, the agent is placed at a starting point in the environment and is given a panoramic
goal observation. The agent needs to localize itself and the goal in the learned environment, plan a
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Figure 1: An illustration of the learned panoramic topological memory(PTM) after exploring the
environment. Each vertex is a recorded panoramic view observation with center to be the front face
direction of the agent. Each edge records the relative pose difference required to travel from one to
another via local controller.

path and then navigate itself to the goal in limited time frame. Only reaching the goal location under
the given time limit is counted as a success episode.

We try to use realistic simulation environments to improve generalization when deploying such
model in real world robots in the future. Due to limited resource, our agent is trained, validated
and tested in the Gibson environment with the tiny split from the Gibson data-set of indoor environ-
ment. The local controller has action space of {forward, left, right} referring to going forward by
25cm, rotate counter-clockwise by 15 degrees and rotate clockwise by 15 degrees. The movement
executed by the local control thus can be formulated as ∆ua = (xa, ya, θa) where ∆uforward =
(0.25, 0.0, 0.0), ∆uleft = (0.0, 0.0, 15 × π/180), ∆uright = (0.0, 0.0,−15 × π/180). Since we
assume noisy actuation of movements by the agent, we thus add Gaussian noises {εx, εy, εθ} to
movements as well similar to the sensory reading. Recent work from Chaplot et al. uses GMM to
model both actuation and sensor noise from real world data, but in our context, such accurate pose
estimation is not necessary as we leverage noisy ego information to provide heuristics to the local
controller.

4 METHODS

4.1 PANORAMIC TOPOLOGICAL MEMORY

We propose a new form of memory for storing an internal representation of the learned environment,
we refer as panoramic topological memory(PTM). Figure 1. shows an example of a learned PTM
after exploration. A panoramic view of surrounding environment is stored at each vertex to serve
as a connecting point among locations from different directions. The middle line of the panoramic
view represents the direction in which the agent is facing when recording the observation. An edge
E1,2 is formed between two vertices(V1, V2) only when the local controller can guide the agent
from one vertex to another in both directions. To increase the capability of the local controller, each
edge also stores a rough estimate of the metric relationship (θ1, θ2, D) between two observations
represented by the two vertices. For instance, if the agent is observing similar view as V1, it can
reach V2’s location by rotating θ1 then move forwardD given no obstacle in between. This provides
an effective heuristic for the local controller, increase the distance between locations where it can
reliably guide to.

4.1.1 LOCAL CONTROL NETWORK

The network C is trained to navigate towards close-by target observations. It takes input of form
(Ocurrent, Otarget,∆p), consists of the current observation, the goal observation and a rough es-
timate of the pose difference needed to reach target observation’s. The current observations helps
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Figure 2: (a) Architecture of the local controller C, localization network L is similar to it. (b) One
iteration of rotation estimation by view angle estimatorR, this process is repeated to obtain accurate
estimation

the controller for obstacle avoidance while the goal observation and relative pose change serves as
heuristics for planning. The output is a probability distribution over the action space and the highest
probability action is executed.

The network is trained using reinforcement learning algorithm actor-critic. We pick random points
along training trajectories to serve as staring and goal observations and reward at each step would
be the reduction of Euclidean distance to the goal observation’s coordinate. For each panoramic
observation we generate 4 120o FOV images equally spaced by 90 degrees to restore edge features,
then pass through 5 layers of convolution layers to obtain an 1024 dimension embedding. The
8 embedding from the 2 panoramic view inputs are then concatenated with pose information and
passed through 4 layers of fully connected network with ReLU activation and batch normalization
ending with a 3-way softmax. The architecture is illustrated in Fig. 2(a).

4.1.2 LOCALIZATION NETWORK

The localization network L(O1, O2) estimate the probability that the local controller can success-
fully navigate betweenO1 andO2. This network serves couple purposes: i) localization of the agent
during task time ii) connecting vertices during map construction iii) by measuring the capability
of the local controller, we can sparsify the memory by removing trivial edges. Since this network
measures the ability of the local control network, it is trained based on a trained version of the local
controller.

The architecture of L is very similar to the local control network but without the pose estimation
information and ends with a single probability output. The training data for L is directly gener-
ated from trained C by random sampling observations from space and label as 1 if C successfully
navigates otherwise 0.

4.1.3 VIEW ANGLE ESTIMATOR

The view angle estimator R(O1, O2) estimates the view angle difference between two panoramic
views. Since we are using panoramic view as vertices and pose metric for control, it is import to
learn the rotation needed to align with observations. We formulate this as an iterative process of
narrowing down the possible rotation range: at each iteration, 4 equally spaced 120o view of one
panoramic and 1 from the other are encoded, stacked then through FC ended with 4-way softmax.
This effectively narrows down the possible rotation angle by four times and we repeat this process 3
times to narrow down the view angle to an accuracy of 3o. To make the method more reliable, 2-way
and 4-way cross matching can also be performed at the cost of efficiency. This cross validation can
also be used to verify the localization as correctly localized observation should align in all directions.
Training of this estimator is through direct supervision with randomly sampled close by panoramic
observations with ground truth rotation. The workflow is illustrated in Fig. 2(b).
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Figure 3: The navigation pipeline of the proposed method. After localization and planning the path
is then executed. Upon reaching an anchor, the belief of relative poss change to the next anchor is
updated.

4.2 MAP CONSTRUCTION

The map construction process during the exploration phase is incremental: given a new observa-
tion Ot, a vertex Vt is generated and an edge between Ot and Ot−1 is automatically formed. The
poss change estimation for this edge is calculated using noisy IMU input. In cluttered indoor en-
vironments, exploration sequence intersects and comes close by previous observations a lot, leav-
ing potential for short cuts between paths to increase map connectivity. When new observation
Ot is received, localization L(Ot, Oi) ∀i < t − k are performed and an edge is formed when
L(Ot, Oi) > Θshortcut where Θshortcut is some shortcut threshold. The pose estimation for short-
cuts are formed using R for rotation and 0 for displacement. Each edge also stores the localization
result between its two vertices.

In order to increase efficiency of the whole solution and build more compact representation, we
would want to remove some vertices that are unnecessary. When a new vertex is introduced and
shortcuts are formed from it, we applied the following vertex elimination decision to this new vertex
and all vertices that connect to it directly: A vertex Vi will be removed whenL(Oj , Ok) > Θsparsify

∀i, j ∈ Adji s.t. i 6= j. This will allow the number of vertices in a limited area environment to
converge as the length of exploration experience growth as there is a maximum vertex density.

4.3 NAVIGATION

At the beginning of a task episode, the agent localize itself to vertex Vc =
argmaxV i∈V1...VN

L(Oi, Ocurrent) and similarly Ogoal to Vgoal. A path is planned through
the topological graph using greedy Dijkstra’s algorithm. Here the edge weight can the Euclidean
distance if the goal is to minimize travel distance, or −log(L(Oi, Oj)) if the purpose is to
increase navigation reliability, or a linear function of both. After the path is chosen, the agent
will navigate itself along the path using the local controller. At each time step, the agent perform
L(Ocurrent, Otarget) > Θreach to check if it has reached the next vertex in the planned path. Upon
on arrival at the next vertex, the agent uses R(Ocurrent, Oi) = θi to estimate the rotation difference
between the current observation and the observation of the current vertex. The hint of relative pose
change to the next vertex can be calculated as (θi + θi,i+1, Di,i+1) where θi,i+1 and Di,i+1 are
metrics stored in Ei,i+1. This is then feed to the local controller and updated at each time step
using IMU reading. This process repeats until the goal vertex is reached. To handle navigation and
localization error, if L(Ocurrent, Oj) is detected to be continuously decreasing for more than 5 time
steps during navigation from Vi to Vj , global localization will be performed and a new path will be
planned accordingly if the current vertex changes. The workflow is shown in Figure 3.
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Figure 4: An example comparison between the internal map constructed by our method and the
baseline SPTM. Our method builds a map with more connectivity, allowing close to optimal path
planning and navigation. Out method is also efficient in computation and space as we generate less
vertices to form the map. The result is more robust and optimal performance.

5 EXPERIMENTS

We trained C,L,R in the Gibson simulation environments using a selection from the small dataset
split and 6 environments form the Stanford2D3DS dataset. The data-set consists of realistic 3D
reconstruction of indoor house environments. The agent was trained using 20 environments and was
tested on 5 environments that are disjoint with the training set. The observation space consists of
RGB panoramic views of size 3 × 128 × 342 and the IMU sensor readings are of size 3 × 1 to
include 2-D coordinate and orientation change. We uses action space of {forward, left, right}
and assume noisy execution and sensor reading as discussed in Section 3.

We generate optimal trajectories using Dijkstra’s algorithm and costmap optimization similar to
Watkins-Valls et al. (2019). We generated 50k trajectories with random distant starting and ending
point and sampled 1M pairs of panoramic observations along these trajectories for the training of
C,L. R is trained by random sampling of 500k observations until convergence. The exploration
trajectory are generated by continuous random sampling of points in unexplored areas of the maps
and executing optimal paths navigating to the sampled location. The 5 layer CNN encoder takes
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Table 1: Navigation success rate

Exploration length 500 1000 2000
SPTM 49.7% 64.8% 69.2%

SPTM psparsify = 0.2 3.8% 12.3% 15.4%
Ours Θsparsify = 0.6 64.9% 79.1% 82.3%
Ours Θsparsify = 0.8 81.8% 89.0% 91.2%
Ours Θsparsify = 0.9 82.5% 92.4% 93.9%

Table 2: Learned map connectivity

r = 0.2m r = 0.5m r = 1.0m
SPTM 32.3% 21.0% 3.5%

Ours Θshortcut = 0.8 97.5% 89.0% 78.3%
Ours Θshortcut = 0.9 96.8% 87.5% 64.2%
Ours Θshortcut = 0.95 96.3% 81.5% 42.0%

input of 128 × 128 and outputs 1024 dimension embedding. The baseline we compare with is
SPTM, a recent work on visual topological navigation which is closely related to ours.

5.1 NAVIGATION

Exploration sequence of different length is provided to the agent and then the agent performs goal-
directed navigation. A goal location observation on average 15m away from the staring point is
provided to the agent and the agent must navigate itself to the within 0.5 meter of the goal location
under 90 seconds to be counted as a successful trajectory. The environments we tested on have
an average area of 294m2. We performed 500 testing trajectory in each testing environment and
results are averaged. Table 1. shows the success rate of different models with different length of
exploration sequence. The graph of SPTM is also sparsified uniformly for testing. We see that our
approach outperforms the baseline by a large margin thanks to increased local control reliability
from panoramic view and pose estimation. We can see a significant performance drop from sub-
sampling SPTM’s memory. Our method perform relatively well even when in sufficient exploration
is provided since out panoramic view greatly increase connectivity.

5.2 CONNECTIVITY

One major advantage of having panoramic views is the improvement of map connectivity. With only
narrow angle view, the learned map is not really a graph but rather a memorization of different paths
where short cuts are formed only when they are traveling in the same direction. The ideal topologi-
cal graph should connect edges that are spatially close to each other. Our panoramic representation
allows vertices to be connected with other close by vertices from all directions, providing more op-
timal path planning. We test the connectivity of observations that are spatially close in Euclidean
distance and check if these pairs of vertices are connected by the learned topological memory of
models. Exploration sequence of length 2000 is generated for 100 times for each testing environ-
ments and here r is the Euclidean distance between pair of vertices. Table 2. shows our model’s
connectivity outperforms the baseline by a large margin. As a result of that, the planned path in
our model are generally shorter and closer to optimal compare to the baseline. Table 3. shows our
method was able to find shorter path to the goal especially when less exploration sequences are
provided. Figure 4. shows an example illustrating the advantage of having good connectivity.

5.3 SCALABILITY

Another big advantage of our method is the scalability. SPTM’s memory size grows linearly with the
size of observation and localization performed at each time step is directly proportional to memory
size which makes it very problematic in large environments. SPTM also does not aggregate new
experience with old ones and the space efficiency drop quickly as areas are repeated explored. Our
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Table 3: Length of executed path compare to baseline

Exploration length 500 1000 2000
SPTM 100.0% 100.0% 100.0%

Ours Θshortcut = 0.9 73.7% 84.6% 91.0%

Figure 5: The size of the map memory as the length of exploration sequence grows.

method eliminates unnecessary edges and vertex count converges upon reaching maximum density.
The local controller in our model is also more capable thus reduce the amount of observations
needed to reliably navigate. We test the scalability by generating 100 exploration sequence for each
test environment. Figure 5 shows the amount of vertices stored in the memory as the exploration
sequence grows.

5.4 LOCALIZATION ACCURACY

One of the main reason why we propose panoramic view over narrowed view angle is its abil-
ity to counteract visual aliasing which can be problematic in topological navigation. Intuitively, a
panoramic view contains more information from more angles thus should improve localization per-
formance. Moreover, our view angle estimator provided extra capability to verify localization accu-
racy. We tested different model’s localization accuracy given 500 sample locations per observation
sequences length for all test environments. We count as successful when the localized observation is
within 1.5m of ground truth. The averaged result is shown in Table 4. This improvement helps our
agent to make less mistakes during navigation and also resulting in less incorrect short-cuts during
map construction.

Table 4: Localization accuracy

Exploration length 500 1000 2000
SPTM 91.0% 84.2% 85.3%
Ours 95.2% 96.2% 95.8%

Ours 2-way crs-vali 98.2% 98.1% 97.3%
Ours 4-way crs-vali 98.9% 98.2% 98.5%
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Table 5: Results of local controller success rate ablation study

goal distance(m) 0.5±0.2 1.0±0.2 3.0±0.2 5.0±0.2
C 97.9% 95.2% 82.8% 44.9%

C w/o ∆p 98.0% 93.5% 42.0% 23.1%

5.5 ABLATIONS

Relative pose difference for local control. We introduced metric information to be factored into
a topological graph, and our main reason is that such noisy estimation of where the local target is
can improve the performance and reliability of our local controller. We performed ablation study
by training a local controller with almost identical architecture compare to ours but without relative
pose estimation information as input and trained using the same data. We then tested the capability
of these local controllers on points randomly sampled on exploration trajectories by measuring their
success rate to navigate to targets at different distances. 2000 pairs of points are generated per testing
environment. We mark as success navigation if agent reaches within 0.5m of the goal location in 30
steps. Table 5. shows the ablation experiments result.

6 CONCLUSION

In this work we proposed a new form of topological memory for indoor navigation. By allocating
a panoramic view observation to each vertex and factoring metric relationship into edges of the
graph, we shown our method has many advantage. The panoramic view enhances the connectivity
and perception while metric relationship improves the capability and robustness of local control,
allowing our method to achieve better performance and scalability. We believe topological memory
can bring great potential to navigation and planning especially in larger environments.

6.1 FUTURE WORK

Although we factored metric information into the topological memory in this work, we believe
topological and metric representation of the environment can be fused together more tightly, by
having more layer of hierarchy. We are interested in having topological memory for high level
planning and building connection between lower level segments metric spaces. It would be useful to
develop methods that can connect metric spaces together through joints in the space such as doors.
The metric map representation are ideal for exploration, optimal control and would be reliable if
references can be added for better reuse. Another interesting topic is how to maintain and improve
the internal map as the agent gains repeated experience over some space. We leave these as our
future work.
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